Search results for: nonlinear-dynamics-in-biological-systems

Biological Systems Nonlinear Dynamics Approach

Author : Jorge Carballido-Landeira
File Size : 30.52 MB
Format : PDF, ePub
Download : 264
Read : 637
Download »
This book collects recent advances in the field of nonlinear dynamics in biological systems. Focusing on medical applications as well as more fundamental questions in biochemistry, it presents recent findings in areas such as control in chemically driven reaction-diffusion systems, electrical wave propagation through heart tissue, neural network growth, chiral symmetry breaking in polymers and mechanochemical pattern formation in the cytoplasm, particularly in the context of cardiac cells. It is a compilation of works, including contributions from international scientists who attended the “2nd BCAM Workshop on Nonlinear Dynamics in Biological Systems,” held at the Basque Center for Applied Mathematics, Bilbao in September 2016. Embracing diverse disciplines and using multidisciplinary approaches – including theoretical concepts, simulations and experiments – these contributions highlight the nonlinear nature of biological systems in order to be able to reproduce their complex behavior. Edited by the conference organizers and featuring results that represent recent findings and not necessarily those presented at the conference, the book appeals to applied mathematicians, biophysicists and computational biologists.

Nonlinear Dynamics in Biological Systems

Author : Jorge Carballido-Landeira
File Size : 21.95 MB
Format : PDF, ePub, Mobi
Download : 531
Read : 1165
Download »
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied mathematicians, biophysicists, and computational biologists.

Nonlinear Electrodynamics in Biological Systems

Author : W. Adey
File Size : 59.45 MB
Format : PDF, ePub
Download : 551
Read : 1082
Download »
The past half century has seen an extraordinary growth in the fields of cellular and molecular biology. From simple morphologi cal concepts of cells as the essential units of living matter there has been an ever-sharper focus on functional organization of living systems, with emphasis on molecular dynamics. Thus, life forms have come to be defined increasingly in terms of metabolism, growth, reproduction and responses to environmental perturbations. Since these properties occur in varying degrees in systems below the level of cellular organization, there has been a blurring of older models that restricted the concepts of life to cellular systems. At the same time, a search has begun for elemental as pects of molecular and atomic behavior that might better define properties common to all life forms. This search has led to an examination of nonlinear behavior in biological macromolecules, whether in response to electrical or chemical stimulation, for example, or as a means of signaling along a molecular chain, or as a means of energy transfer. Experimental knowledge in this area has grown rapidly in the past decade, and in some respects has outstripped theoretical models adequate to ex plain these new observations. Nevertheless, it can be claimed that there is now an impressive body of experiments implicating non linear, nonequilibrium processes as fundamental steps in sequential operations of biological systems.

Future Directions of Nonlinear Dynamics in Physical and Biological Systems

Author : P.L. Christiansen
File Size : 75.46 MB
Format : PDF, ePub, Mobi
Download : 549
Read : 439
Download »
Early in 1990 a scientific committee was formed for the purpose of organizing a high-level scientific meeting on Future Directions of Nonlinear Dynamics in Physical and Biological Systems, in honor of Alwyn Scott's 60th birthday (December 25, 1991). As preparations for the meeting proceeded, they were met with an unusually broad-scale and high level of enthusiasm on the part of the international nonlinear science community, resulting in a participation by 168 scientists from 23 different countries in the conference, which was held July 23 to August 11992 at the Laboratory of Applied Mathematical Physics and the Center for Modelling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT) of the Technical University of Denmark. During the meeting about 50 lectures and 100 posters were presented in 9 working days. The contributions to this present volume have been grouped into the following chapters: 1. Integrability, Solitons, and Coherent Structures 2. Nonlinear Evolution Equations and Diffusive Systems 3. Chaotic and Stochastic Dynamics 4. Classical and Quantum Lattices and Fields 5. Superconductivity and Superconducting Devices 6. Nonlinear Optics 7. Davydov Solitons and Biomolecular Dynamics 8. Biological Systems and Neurophysics. AI Scott has made early and fundamental contributions to many of these different areas of nonlinear science. They form an important subset of the total number of the papers and posters presented at the meeting. Other papers from the meeting are being published in a special issue of Physica D Nonlinear Phenomena.

Nonlinear Dynamics and Fluctuations in Biological Systems

Author : Benjamin M. Friedrich
File Size : 66.30 MB
Format : PDF, Kindle
Download : 627
Read : 321
Download »

Dynamics of Biological Systems

Author : Michael Small
File Size : 32.31 MB
Format : PDF, ePub
Download : 647
Read : 1137
Download »
From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.

Modeling dynamics biological systems

Author : Bruce Hannon
File Size : 21.71 MB
Format : PDF
Download : 138
Read : 815
Download »
Models help us understand the dynamics of real-world processes by using the computer to mimic the actual forces that are known or assumed to result in a system's behavior. This book does not require a substantial background in mathematics or computer science.

Dynamical Systems in Population Biology

Author : Xiao-Qiang Zhao
File Size : 40.1 MB
Format : PDF, Kindle
Download : 810
Read : 1109
Download »
Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.

Self Organized Biological Dynamics and Nonlinear Control

Author : Jan Walleczek
File Size : 31.99 MB
Format : PDF, Docs
Download : 575
Read : 1162
Download »
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.

Advanced Models of Neural Networks

Author : Gerasimos G. Rigatos
File Size : 80.77 MB
Format : PDF, ePub, Mobi
Download : 793
Read : 456
Download »
This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

Topics in Nonlinear Dynamics

Author : Erik Mosekilde
File Size : 71.60 MB
Format : PDF, ePub, Mobi
Download : 890
Read : 631
Download »
Through a series of examples from physics, engineering, biology and economics, this book illustrates the enormous potential for application of ideas and concepts from nonlinear dynamics and chaos theory. The overlap with examples published in other books is virtually equal to zero. The book takes the reader from detailed studies of bifurcation structures of relativity simple models to pattern formation in spatially extended systems. The book also discusses the different perspectives that nonlinear dynamics brings to different fields of science.

Nonlinear Dynamics and Chaos

Author : Steven H. Strogatz
File Size : 22.8 MB
Format : PDF, ePub, Docs
Download : 958
Read : 1023
Download »
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Nonlinear Dynamics Mathematical Biology And Social Science

Author : Joshua M. Epstein
File Size : 39.10 MB
Format : PDF, Docs
Download : 530
Read : 218
Download »
These lectures develop simple models of complex social processes using nonlinear dynamics and mathematical biology. Dynamical analogies between seemingly disparate social and biological phenomena,revolutions and epidemics, arms races, and ecosystem dynamics,are revealed and exploited. Nonlinear Dynamics, Mathematical Biology, and Social Science invites social scientists to relax,in some cases abandon,the predominant assumption of perfectly informed utility maximization and explore social dynamics from such perspectives as epidemiology and predator-prey theory. The volume includes a concentrated course on nonlinear dynamical systems.

Chaos in Ecology

Author : J. M. Cushing
File Size : 59.76 MB
Format : PDF, ePub, Docs
Download : 660
Read : 308
Download »
It is impossible to predict the exact behavior of all biological systems and how these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented how these sorts of patterns are the consequences of deceptively simple rules that determine the nature of the patterns created. Chaos in Ecology will explain how simple beginnings result in complicated results. Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations. It is impossible to predict the exact behavior of almost all biological systems and yet these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented that these sorts of patterns are the consequence of deceptively simple rules that determine the nature of the patterns created. In essence, simple beginnings result in complicated results This realization is captured in the mathematical notion of "chaos" and is rendered intuitive by the oft-repeated metaphor: "A butterfly beats its wings in China and causing a thunderstorm in the Midwest." Thus, seemingly trivial initial conditions (e.g. a butterfly in China) cascade through a series of intermediate events to create a significant large-scale event (e.g. a thunderstorm) Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations

Nonlinear and Complex Dynamics

Author : José António Tenreiro Machado
File Size : 59.48 MB
Format : PDF, Docs
Download : 488
Read : 837
Download »
Nonlinear Dynamics of Complex Systems describes chaos, fractal and stochasticities within celestial mechanics, financial systems and biochemical systems. Part I discusses methods and applications in celestial systems and new results in such areas as low energy impact dynamics, low-thrust planar trajectories to the moon and earth-to-halo transfers in the sun, earth and moon. Part II presents the dynamics of complex systems including bio-systems, neural systems, chemical systems and hydro-dynamical systems. Finally, Part III covers economic and financial systems including market uncertainty, inflation, economic activity and foreign competition and the role of nonlinear dynamics in each.

Life An Introduction to Complex Systems Biology

Author : Kunihiko Kaneko
File Size : 68.81 MB
Format : PDF, ePub
Download : 593
Read : 1117
Download »
This book examines life not from the reductionist point of view, but rather asks the questions: what are the universal properties of living systems, and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation is relatively non-technical to appeal to a broad spectrum of students and researchers.

Nonlinear Dynamics of Interacting Populations

Author : A. D. Bazykin
File Size : 55.84 MB
Format : PDF, ePub, Mobi
Download : 765
Read : 1240
Download »
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.

Modeling Nonlinear Behavior of Dynamic Biological Systems

Author : Maryam Masnadi-Shirazi
File Size : 58.90 MB
Format : PDF, ePub
Download : 904
Read : 743
Download »
With the availability of large-scale data acquired through high-throughput technologies, computational systems biology has made substantial progress towards partially modeling biological systems. In this dissertation we intend to focus on deciphering the dynamics of such systems through data-driven analysis of multivariate time-course data. We develop integrative frameworks to study the following problems: 1) time-varying causal inference when the number of samples exceeds the number of variables (overdetermined case), 2) dynamic causal network reconstruction when the number of variables exceeds the data samples (underdetermined case), 3) forecasting the dynamic behavior of complex chaotic systems from short and noisy time-series data. In the first scenario we utilize the notion of Granger causality identified by a first-order vector autoregressive (VAR) model on phosphoproteomic measurements to unravel the crosstalk between various phosphoproteins in three distinct time intervals. In scenario 2 we use a non-parametric change point detection (CPD) algorithm on transcriptional time series data from a mouse cell cycle to estimate temporal patterns that can be associated with different phases of the cell cycle. In the second scenario the problem becomes more complex as the number of variables exceeds the number of time-series data and we use a higher order VAR models to estimate causal interactions among cell cycle genes. To solve this ill-posed problem we use Least Absolute Shrinkage and Selection Operator (LASSO) and select the regularization parameters through Estimation Stability with Cross Validation (ES-CV) leading to more biologically meaningful results. LASSO + ES-CV is applied to temporal intervals associated with the G1, S and G2/M phases of the cell cycle to estimate phase-specific intracellular interactions. In problem 3, we develop a nonparametric forecasting algorithm for chaotic dynamic systems, Multiview Radial Basis Function Network (MV-RBFN) that outperforms a model-free approach, Multiview Embedding (MVE). In this algorithm, the forecast skill of all possible manifolds (views) reconstructed from a combination of variables and their time lags is assessed and ranked from best to worst. MV-RBFN uses the top k views as the inputs of a neural network to approximate a nonlinear function f(.) that maps the past events of a dynamic system as the input, to future values as the output.

Perspectives of Nonlinear Dynamics Volume 2

Author : E. Atlee Jackson
File Size : 79.89 MB
Format : PDF, ePub
Download : 447
Read : 632
Download »
The dynamics of physical, chemical, biological or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. The presentation and style is intended to stimulate the reader's imagination to apply these methods to a host of problems and situations.

Chemical and Biological Processes in Fluid Flows

Author : Zolt n Neufeld
File Size : 62.71 MB
Format : PDF, ePub
Download : 868
Read : 800
Download »
Many chemical and biological processes take place in fluid environments in constant motion OCo chemical reactions in the atmosphere, biological population dynamics in the ocean, chemical reactors, combustion, and microfluidic devices. Applications of concepts from the field of nonlinear dynamical systems have led to significant progress over the last decade in the theoretical understanding of complex phenomena observed in such systems. This book introduces the theoretical approaches for describing mixing and transport in fluid flows. It reviews the basic concepts of dynamical phenomena arising from the nonlinear interactions in chemical and biological systems. The coverage includes a comprehensive overview of recent results on the effect of mixing on spatial structure and the dynamics of chemically and biologically active components in fluid flows, in particular oceanic plankton dynamics. Sample Chapter(s). Chapter 1: Fluid Flows (248 KB). Contents: Fluid Flows; Mixing and Dispersion in Fluid Flows; Chemical and Ecological Models; Reaction-Diffusion Dynamics; Fast Binary Reactions and the Lamellar Approach; Decay-Type and Stable Reaction Dynamics in Flows; Mixing in Autocatalytic-Type Processes; Mixing in Oscillatory Media; Further Reading. Readership: Physicists, applied mathematicians, chemical engineers and marine ecologists.